全国服务热线:0898-08980898
联系我们 contact us
地址:
海南省海口市
邮箱:
admin@youweb.com
电话:
0898-08980898
传真:
1234-0000-5678
行业新闻 当前位置: 首页 > 傲世皇朝新闻 > 行业新闻
Interval Prediction of Photovoltaic Power Applying Improved Weight Optimization Model添加时间:2024-09-09
[1]国家能源局.太阳能发展"十三五"规划 [EB/OL].(2016-12-08)[2019-04-01].http://zfxxgk.nea.gov.cn/auto87/201612/t20161216_2358.html.
[2]我国光伏发电累计装机规模超过17000万千瓦 [EB/OL].(2019-01-18)[2019-04-01]. http://www.cec.org.cn/hangyeguangjiao/lvsenengyuan/2019-01-18/188304.html.
[3]丁明,王伟胜,王秀丽,等.大规模光伏发电对电力系统影响综述[J].中国电机工程学报,2014,34(1):1-14.
DING Ming,WANG Weisheng,WANG Xiuli,et al.A review on the effect of large-scale PV generation on power systems[J].Proceedings of the CSEE,2014,34(1):1-14.
[4]赖昌伟,黎静华,陈博,等.光伏发电出力预测技术研究综述[J].电工技术学报,2019,34(6):1201-1217.
LAI Changwei,LI Jinghua,CHEN Bo,et al.Review of photovoltaic power output prediction technology[J].Transactions of China Electrotechnical Society,2019,34(6):1201-1217.
[5]龚莺飞,鲁宗相,乔颖,等.光伏功率预测技术[J].电力系统自动化,2016,40(4):140-151.
GONG Yingfei,LU Zongxiang,QIAO Ying,et al.An overview of photovoltaic energy system output forecasting technology[J].Automation of Electric Power Systems,2016,40(4):140-151.
[6]高阳,张碧玲,毛京丽,等.基于机器学习的自适应光伏超短期出力预测模型[J].电网技术,2015,39(2):307-311.
GAO Yang,ZHANG Biling,MAO Jingli,et al.Machine learning-based adaptive very-short-term forecast model for photovoltaic power[J].Power System Technology,2015,39(2):307-311.
[7]叶林,陈政,赵永宁,等.基于遗传算法-模糊径向基神经网络的光伏发电功率预测模型[J].电力系统自动化,2015,39(16):16-22.
YE Lin,CHEN Zheng,ZHAO Yongning,et al.Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis functiom neural network[J].Automation of Electric Power Systems,2015,39(16):16-22.
[8]陈通,孙国强,卫志农,等.基于相似日和CAPSO-SNN的光伏发电功率预测[J].电力自动化设备,2017,37(3):66-71.
CHEN Tong,SUN Guoqiang,WEI Zhinong,et al.Photovoltaic power generation forecasting based on similar day and CAPSO-SNN[J].Electric Power Automation Equipment,2017,37(3):66-71.
[9]张程熠,唐雅洁,李永杰,等.适用于小样本的神经网络光伏预测方法[J].电力自动化设备,2017,37(1):101-106,111.
ZHANG Chengyi,TANG Yajie,LI Yongjie,et al.Photovoltaic power forecast based on neural network with a small number of samples[J].Electric Power Automation Equipment,2017,37(1):101-106,111.
[10]王飞,米增强,甄钊,等.基于天气状态模式识别的光伏电站发电功率分类预测方法[J].中国电机工程学报,2013,33(34):75-82,14.
WANG Fei,MI Zengqiang,ZHEN Zhao,et al.A classified forecasting approach of power generation for photovoltaic plants based on weather condition pattern recognition[J].Proceedings of the CSEE,2013,33(34):75-82,14.
[11]傅美平,马红伟,毛建容.基于相似日和最小二乘支持向量机的光伏发电短期预测[J].电力系统保护与控制,2012,40(16):65-69.
FU Meiping,MA Hongwei,MAO Jianrong.Short-term photovoltaic power forecasting based on similar days and least square support vector machine[J].Power System Protection and Control,2012,40(16):65-69.
[12]王昕,黄柯,郑益慧,等.基于萤火虫算法-广义回归神经网络的光伏发电功率组合预测[J].电网技术,2017,41(2):455-461.
WANG Xin,HUANG Ke,ZHENG Yihui,et al.Combined PV power forecast based on firefly algorithm- generalized regression neural network[J].Power System Technology,2017,41(2):455-461.
[13]王守相,张娜.基于灰色神经网络组合模型的光伏短期出力预测[J].电力系统自动化,2012,36(19):37-41.
WANG Shouxiang,ZHANG Na.Short-term out put power forecast of photovoltaic based on a grey and neural network hybrid model[J].Automation of Electric Power Systems,2012,36(19):37-41.
[14]丁明,刘志,毕锐,等.基于灰色系统校正-小波神经网络的光伏功率预测[J].电网技术,2015,39(9):2438-2443.
DING Ming,LIU Zhi,BI Rui,et al.Photovoltaic output prediction based on grey system correction-wavelet neural network[J].Power System Technology,2015,39(9):2438-2443.
[15]兰飞,桑川川,梁浚杰,等.基于条件Copula函数的风电功率区间预测[J].中国电机工程学报,2016,36(S1):79-86.
LAN Fei,SANG Chuanchuan,LIANG Junjie,et al.Interval prediction for wind power based on conditional copula function[J].Proceedings of the CSEE,2016,36(S1):79-86.
[16]FONSECA Junior J G D S, OOZEKI T, OHTAKE H, et al. On the use of maximum likelihood and input data similarity to obtain prediction intervals for forecasts of photovoltaic power generation[J]. Journal of Electrical Engineering & Technology, 2015, 10(3):1342-1348.
[17]赵维嘉,张宁,康重庆,等.光伏发电出力的条件预测误差概率分布估计方法[J].电力系统自动化,2015,39(16):8-15.
ZHAO Weijia,ZHANG Ning,KANG Chongqing,et al.A method of probabilistic distribution estimation of conditional forecast error for PV generation[J].Automation of Electric Power Systems,2015,39(16):8-15.
[18]程泽,刘冲,刘力.基于相似时刻的光伏出力概率分布估计方法[J].电网技术,2017,41(2):448-455.
CHENG Ze,LIU Chong,LIU Li.A method of probabilistic distribution estimation of PV generation based on similar time of day[J].Power System Technology,2017,41(2):448-455.
[19]KHOSRAVI A,NAHAVANDI S,CREIGHTON D,et al.Lower upper bound estimation method for construction of neural net-work-based prediction intervals[J].IEEE Transactions on Neural Networks,2011,22(3):337-346.
[20]HAO Q,SRINIVASAN D,KHOSRAVI A.Short-term load and wind power forecasting using neural network-based prediction intervals[J].IEEE Transactions on Neural Networks,2014,25(2):303-315.
[21]史峰,王小川,郁磊,等.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010:66-67.
[22]张振宇,葛少云,刘自发.粒子群优化算法及其在机组优化组合中应用[J].电力自动化设备,2006,26(5):28-31.
ZHANG Zhenyu,GE Shaoyun,LIU Zifa.Particle swarm optimization algorithm and its application in unit commit-ment[J].Electric Power Automation Equipment,2006,26(5):28-31.
[23]杨锡运,关文渊,刘玉奇,等.基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J].中国电机工程学报,2015,35(S1):146-153.
YANG Xiyun,GUAN Wenyuan,LIU Yuqi,et al.Prediction intervals forecasts of wind power based on PSO-KELM[J].Proceedings of the CSEE,2015,35(S1):146-153.

平台注册入口